Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36772233

RESUMEN

In this paper, we present a direct drive brush-shaped tool developed for the use of robotic vine suckering. Direct drive design philosophy allows for precise and high bandwidth control of the torque exerted by the brush. Besides limiting the torque exerted onto the plant, this kind of design philosophy allows the brush to be used as a torque sensor. High bandwidth torque feedback from the tool is used to enable a position controlled robot arm to perform the suckering task without knowing the exact position and shape of the trunk of the vine. An experiment was conducted to investigate the dependency of the applied torque on the overlap between the brush and the obstacle. The results of the experiment indicate a quadratic relationship between torque and overlap. This quadratic function is estimated and used for compliant trunk shape following. A trunk shape following experiment demonstrates the utility of the presented tool to be used as a sensor for compliant robot arm control. The shape of the trunk is estimated by tracking the motion of the robot arm during the experiment.

2.
Sensors (Basel) ; 22(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35458946

RESUMEN

There are activities in viticulture and mariculture that require extreme physical endurance from human workers, making them prime candidates for automation and robotization. This paper presents a novel, practical, heterogeneous, autonomous robotic system divided into two main parts, each dealing with respective scenarios in viticulture and mariculture. The robotic components and the subsystems that enable collaboration were developed as part of the ongoing HEKTOR project, and each specific scenario is presented. In viticulture, this includes vineyard surveillance, spraying and suckering with an all-terrain mobile manipulator (ATMM) and a lightweight autonomous aerial robot (LAAR) that can be used in very steep vineyards where other mechanization fails. In mariculture, scenarios include coordinated aerial and subsurface monitoring of fish net pens using the LAAR, an autonomous surface vehicle (ASV), and a remotely operated underwater vehicle (ROV). All robotic components communicate and coordinate their actions through the Robot Operating System (ROS). Field tests demonstrate the great capabilities of the HEKTOR system for the fully autonomous execution of very strenuous and hazardous work in viticulture and mariculture, while meeting the necessary conditions for the required quality and quantity of the work performed.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Programas Informáticos , Integración de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...